Adenine Base Editing enables sustained reduction of HBsAg expression and inhibition of Hepatitis B viral replication in preclinical models

Smekalova E.M.¹, Kumar A.², Combe E.², Dejene S.¹, Chen C-Y.¹, Leboeuf D.¹, Martinez M.G.², Rees H.¹, Barrera L.A.¹, Ciaramella G.¹, Packer M.S.¹, Testoni B.², Gregoire F.¹, Zoulim F.^{2,3,4,5}

1. Beam Therapeutics, Cambridge, MA, USA; 2) Cancer Research Center of Lyon, INSERM, U1052, Lyon, France. 4) University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France 5) Institut Universitaire de France (IUF), 75005 Paris, France.

1. Unmet need in patients with chronic HBV

- Chronic Hepatitis B infection remains a global health problem (>296mln people infected worldwide, 800 000 deaths/year) (WHO, DHHS)
- HBV genome is maintained in human hepatocytes as episomal covalently closed circular DNA (cccDNA)
- cccDNA persistence in the liver is responsible for chronic HBV infection; failure to prevent HBV rebound from cccDNA is one of the key challenges to cure HBV
- HBV DNA integrates into the human genome and serves as a source of Hepatitis B Surface antigen (HBsAg) expression
- Standard antiviral medications (nucleos(t)ide analogs reverse transcriptase inhibitors) decrease viral replication, but do not provide a cure, and do not influence viral protein expression (HBsAg) from cccDNA and integrated HBV DNA

2. Adenine Base editors (ABE) convert A-T into G-C without double-stranded break (DSB)

6. ABE reduces HBV viral parameters, including HBsAg level, in primary human hepatocytes (PHH)

Figure 1. (A) Starting DNA sequence with the target base pair (A:T). (B) The adenine base editor (ABE) consists of an evolved TadA* deaminase (lavender) connected to partially inactivated CRISPR-Cas enzyme (grey). The base editor binds to a target sequence that is complementary to the guide-RNA (magenta) and exposes a stretch of single-stranded DNA. (C) The deaminase converts the target adenine into inosine (which is read as guanine by DNA polymerases) and the Cas enzyme nicks (▲) the opposite strand. (D) The nicked strand is repaired completing the conversion of an A:T to G:C base pair.

3. Editing strategy

- Targeting HBV genome with ABE will allow precise introduction of missense mutations silencing viral genes without generating DSB, thus minimizing risk for chromosomal rearrangements
- Base editing will address two key aspects of Chronic Hepatitis B with the same reagents:

HepG2-NTCP hepatoma cell line

7. In vivo PoC in HBVcircle mouse model: ABE enables loss of HBsAg and sustained 98% reduction in HBV DNA

- **HBVcircle mouse model** supports durable production of HBV-like viral particles and HBV antigen expression in immunocompetent mice (Yan et al, 2017)
- 4 weeks after hydrodynamic injection with cccDNA-like minicircle plasmid, mice received one dose of base editing reagents (mRNA&gRNA formulated in a lipid nanoparticle (LNP)
- Entecavir (SOC) treated mice received antiviral at 0.03mg/kg orally for two weeks, then the treatment was discontinued to reveal viral rebound.

5. Base Editing reduces HBsAg expression in PLC/PRF/5 cells from naturally integrated HBV DNA

Figure 3. (A) Experimental protocol;

(B) Extracellular HBsAg levels were determined by ELISA at the 4th day post-transfection with ABE and gRNAs PS1 or PS2. (C) ~60-75% editing of HBs gene was achieved to enable robust reduction of HBsAg.

LNP LNP	LNP	LNP	C	C
Figure 6. (A) As expected, discontinuation of entecavir results in HBV rebound ABE/HBV gRNA treatment enables up to 1.3Log10 (>90%) sustained HBV DNA	(pos.con ⁻ A reductio	tr.); <u>on;</u>	ABE+ gRNA	Editi
B) As expected, Entecavir SOC does not significantly impact HBsAg level;			control	(92 =
ABE&HBV gRNAs enable 1log10 (90%) HBsAg reduction at the end of the	<u>study;</u>		PS2	(68 =
C) Robust cccDNA editing.			PS2 + X	(47±

9. Conclusions

- Adenine Base Editing enables sustained reduction of the two major HBV markers, HBsAg and HBV DNA, in relevant *in vitro* and *in vivo* models
 - ABE base editing reduces HBsAg, HBeAg, HBV DNA, and 3.5kb RNA in HepG2-NTCP cells and primary human hepatocytes;
 - Combining base editing reagents with standard antiviral lamivudine does not compromise anti-HBV effect;
 - Base editing strongly reduces HBsAg expression from integrated HBV sequences;
 - Complete loss of HBsAg (3-4 log10) in HBV minicircle mouse model;
 - 1log10 HBsAg reduction in HBV humanized mice.
- Potential to use single gRNA to inhibit HBsAg/HBV replication or multiplexing gRNAs to reduce other viral markers (HBeAg, 3.5kb viral RNA)
- Potential to enable sustained effect with a single dose treatment

Disclosure: this work was funded by Beam Therapeutics, a public company developing base editing technology for human therapeutics. Elena Smekalova, Selame Dejene, Michael Packer, Dominique LeBoeuf, Robert Dorkin, Rosie Chen, Luis Barrera, Giuseppe Ciaramella, Francine Gregoire, are employees/shareholders of Beam Therapeutics