Efficient LNP delivery of mRNA in vivo and ex vivo to T and NK cells

Lindsey Cohan, Elizabeth Campbell, Brianíz, Daniel Lee, Amanda Costa, Robert Dorkin, Cory Sago, Jason Gehrke, Guiseppe Caramella and Yinneng Yang

Beam Therapeutics, Cambridge, MA

Introduction

Autologous CAR T cell therapy requires the manufacture of bespoke products on an individual patient basis, and current generation allogeneic CAR T cells require stringent patient lymphodepletion to achieve clinical responses comparable to autologous products. In vivo delivery of mRNA encoding therapeutically relevant transgenes such as CARs has great potential for transiently reprogramming patient immune cells in an autologous manner without the need to manufacture the cells ex vivo, and without the undesirable effects of stringent lymphodepletion or the added risk of allogeneic product rejection. Lipid nanoparticles (LNP) are an efficient platform for in vivo delivery of RNA. Moreover, ex vivo RNA delivery via LNP could provide a platform for base editing CAR T cells to improve upon current CAR T manufacturing processes.

Here we describe ex vivo and in vivo LNP-mediated delivery of mRNA encoding reporter proteins to T and NK cells. Taken together, these data provide a promising approach for LNP-based delivery for in vivo CAR-T and NK cell production as well as an LNP-based strategy for ex vivo base editing in CAR manufacturing.

Applications for LNP delivery to T and NK cells

High-throughput barcoding of LNPs enables multiplexed screening of hundreds of LNPs in vivo in the same experiment.

Figure 1. (A) Ex vivo delivery of LNP containing guide-RNA and editor mRNA for base editing T cells provides alternative to current CAR T manufacturing processes. ABE is a fusion protein comprising an evolved TadA deaminase (teal) connected to a CRISPR-Cas enzyme (grey). The base editor binds to a target sequence that is complementary to the gRNA (magenta) and exposes a stretch of ssDNA. The deaminase converts the target adenine into inosine (which is read as guanine by DNA polymerases) and the Cas enzyme nicks the opposite strand. The nicked strand is repaired completing the conversion of an A:T to G:C base pair (T:C). (B) In vitro LNP-mediated delivery of mRNA allows for transient transfection of immune cells with mRNA CAR molecules.

Figure 2. In vivo screening of thousands of chemically-distinct LNPs was conducted in a manner similar to previously described (3). In a single experiment, hundreds of LNPs were formulated with various novel covalizable lipid structures to co-encapsulate an mRNA encoding for Cre recombinase and a DNA barcode. LNPs were pooled together and administered into a single cohort of A14 Cre-reporter mice. After 72 hours, tissues were isolated and tTomato-positive cells were FACS isolated. DNA barcodes were recovered from isolated cell populations and sequenced using NextSeq after LNP administered. LNPs are scored for biodistribution tropism to bone marrow and other tissues (A). LNPs with favorable barcode scores were analyzed across additional in vivo experiments. Lead LNPs were selected by percentage of T or NK cells reporter positive normalized to an LNP control (B).

Figure 3. After identification via barcoded screening, LNPs 1-3 were formulated with GFP mRNA. LNPs transfected stimulated human primary T cells ex vivo in a dose-dependent manner plateauing at 5 ug/mL (A). Unstimulated T cells (A) demonstrated no increase in GFP expression following LNP administration. Stimulated human T (C) and NK (D) cells were next transfected under optimized culture conditions and in the presence of serum, yielding over 50% - 75% GFP expression, respectively.

Efficient LNP delivery to mouse T cells in vivo

Figure 4. The biodistribution of LNP2 and LNP3 were assessed by delivery of Cre recombinase mRNA in a pre-reporter mouse model (A14), which expresses the fluorescent protein tTomato under a constitutive CAG promoter following co-mediating pme editing. A14 mice were dosed with 1.0 mg/kg of LNPs containing Cre recombinase mRNA. After 48 hours, the percentage (A) and FPI (B) of tTomato expression in T cells in bone marrow and spleen were measured using flow cytometry. T cells expressing CD69, an activation marker, demonstrated increased LNP delivery via percentage (C) and FPI (D).

Non-human primate T cells express reporter protein following IV LNP infusion

Figure 5. LNPs were administered to humanized NSG mice at a dose of 1.0 mg/kg reporter mRNA. 24 hours after LNP administration, reporter protein expression was detected in T cells (A) and NK cells (B) in bone marrow and spleen via flow cytometry.

Figure 6. Cynomolgus macaques were dosed via intravenous infusion with LNP (A). Percent reporter-positive CD3+ T cells (%), and (B) reporter expression (Mean Fluorescence Intensity, MFI) was measured after 24 hours by flow cytometry.

Conclusions

Multiplexed in vivo lipid nanoparticle screening enabled our identification of LNPs with favorable expression profiles in target cells of interest. We validated transfection efficiency of these lead LNPs in immune cells ex vivo and in vivo in murine, humanized mouse, and NHP models. Efficient in vivo delivery of mRNA to T and NK cells could enable transient autologous CAR T or CAR-NK cell production, negating the requirement for costly ex vivo manufacturing. Furthermore, ex vivo LNP delivery opens the door for an alternative approach to delivering nucleic acids in CAR-T manufacturing. Work is ongoing for optimizing LNP-mediated base editing and for improving transfection efficiency and specificity of lipid nanoparticles in vivo using ligand-targeted LNPs.

References and Disclosures


This work was funded by Beam Therapeutics, a publicly company developing base editing technology for harnessing transcription. All authors are employees of Beam Therapeutics.

beamtx.com © 2022 Beam Therapeutics