Optimization of LNP for in vivo base editing

Delai Chen
September 23, 2021
TIDES USA
Disclosure

- I am a Beam employee and shareholder
Overview

- Introduction to Base Editing and Beam’s program portfolio
- Optimization of LNP platform for potent in vivo base editing in the liver of NHPs
- Develop LNPs for in vivo delivery outside the liver
Base editing is a new approach to gene editing

Nuclease editing
Creation of double-stranded breaks in DNA at a target location to disrupt, delete, insert, or modify genes

CRISPR, Zinc Finger Nucleases, TALEN, ARCUS

Base editing
Direct conversion of one base pair to another at a target location, without double-stranded breaks
Base editors chemically modify target bases, permanently and predictably

CRISPR – established guide RNA-driven DNA targeting:
- Opens a short stretch of single strand DNA window
- Modified to not cause double stranded breaks

Deaminase – operates on single stranded DNA to completes chemical modification at predictable target DNA base

A-to-G base editor (“ABE”)

- Adenine (A) to Inosine (I) (read as G by DNA polymerase)
- Amine and Deamination

C-to-T base editor (“CBE”)

- Cytosine (C) to Uracil (U) (read as T by DNA polymerase)
Diversified portfolio of wholly-owned base editing programs

<table>
<thead>
<tr>
<th>DELIVERY</th>
<th>THERAPEUTIC AREA</th>
<th>PROGRAM / DISEASE</th>
<th>APPROACH</th>
<th>RESEARCH</th>
<th>LEAD OPTIMIZATION</th>
<th>IND ENABLING</th>
<th>PHASE I/II</th>
<th>PIVOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRO-PORATION</td>
<td>Hematology</td>
<td>BEAM-101 Sickle Cell Disease</td>
<td>Fetal hemoglobin activation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BEAM-102 Sickle Cell Disease</td>
<td>Direct correction of sickle-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BEAM-201 T-cell Acute Lymphoblastic Leukemia</td>
<td>Multiplex silenced CD7 CAR-T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acute Myeloid Leukemia</td>
<td>Multiplex silenced CAR-T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-VIRAL (LNP)</td>
<td>Liver Diseases</td>
<td>Alpha-1 Antitrypsin Deficiency</td>
<td>Precise correction of E342K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glycogen Storage Disorder 1a</td>
<td>Precise correction of Q347X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Precise correction of R83C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Undisclosed</td>
<td>Multiplex editing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIRAL (AAV)</td>
<td>Ocular and CNS</td>
<td>Stargardt Disease</td>
<td>Precise correction of G1961E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Undisclosed</td>
<td>Precise correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Undisclosed</td>
<td>Gene silencing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LNP = Lipid Nanoparticle; AAV = Adeno Associated Virus; CNS = Central Nervous System
We deliver base editor mRNA and gRNA using LNP to enable in vivo base editing

Optimization of LNP components led to potent A→G editing in NHP liver
- mRNA production process
- gRNA chemical modification
- LNP formulation

Surrogate payload

target: CAGG\textcolor{red}{A}TCCGCACAGACTCCA GGG
- Rodent-NHP conserved region on liver-expressed ALAS1*
- 5A→G edit causes a I491T mutation of unknown functional consequences

*ALAS1: 5’-aminolevulinate Synthase 1
Goal of mRNA process optimization

The goal of mRNA process optimization is to improve activity and reduce immune stimulation.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Purpose</th>
<th>Tunable parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ Translation: higher base editor expression, higher editing</td>
<td>↑ full length product</td>
<td>5’cap</td>
</tr>
<tr>
<td>↓ Immune stimulation: reduce toxicity</td>
<td>↑ capping</td>
<td>5'/3’-UTR</td>
</tr>
<tr>
<td></td>
<td>↓ dsRNA</td>
<td>codon optimization</td>
</tr>
<tr>
<td></td>
<td>↓ short transcripts</td>
<td>poly(A)</td>
</tr>
<tr>
<td></td>
<td>↓ dsRNA</td>
<td>modified nucleosides</td>
</tr>
<tr>
<td></td>
<td>↓ process residuals</td>
<td>modified nucleosides</td>
</tr>
</tbody>
</table>

Process steps

- **design mRNA construct**
- **Plasmid production**
- **In vitro transcription**
- **Purification**

- • oligo dT
- • IPRP
- • HIC
- • other…

- • cap
- • modified NTP
- • reaction condition
- • other…

- • 5’cap
- • 5'/3’-UTR
- • codon optimization
- • poly(A)
- • modified nucleosides

Parameters

- • cap
- • modified NTP
- • reaction condition
- • other…

- • oligo dT
- • IPRP
- • HIC
- • other…
Optimization of IVT and purification increased full-length product and eliminated immune stimulation in vitro

% Full length mRNA

IVT1

IVT2

mRNA purification

In vitro immune stimulation

IFN-β (fg/mL)

mRNA purification

IVT1

IVT2

P1 P2 P2 P3 buffer
Optimized mRNA is active and does not induce inflammatory response in vivo

ALAS1 edit in mouse liver
(0.1mg/kg total RNA)

Mouse serum [IP-10]
6hr-post injection

<table>
<thead>
<tr>
<th>%A-G edit</th>
<th>P1</th>
<th>P2</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVT1</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>IVT2</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serum [IP-10], pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVT1</td>
</tr>
<tr>
<td>IVT2</td>
</tr>
</tbody>
</table>

mRNA purification
gRNA can be chemically modified to increase its stability

Stabilizing modification types

- **End mods**: Stabilize gRNA against exonucleases
 - Modifications at the first three nts of the 5’ end and first three nts of the last four at the 3’ end

- **Heavy (internal) mods**: Stabilize gRNA against endonucleases
 - Can inhibit Cas activity and thus must be placed at specific locations
 - Particularly important for in vivo studies

Beam proprietary sgRNA modifications increase base-editing potency in vivo

Liver editing in mice

![Graph showing liver editing in mice with various gRNA chemical modifications and dosages.]

- End mods
- Lit M1
- Lit M2
- Beam M1
- Beam M2

Dosages:
- 0.01mg/kg
- 0.03mg/kg
Produce potent, stable, and consistently manufactured LNP

- **Scope of process optimization**
 - Lipid composition
 - Helper lipid components
 - Molar % of lipids
 - N:P ratio
 - Formulation process
 - Mixing of components
 - Purification and concentrating
 - Buffer and excipients

- In this work, mRNA and sgRNA are co-encapsulated in the same LNP at 1:1 mass ratio
Consistency of LNP formulations was improved through process optimization.

Size

Polydispersity index

Encapsulation efficiency

![Graphs showing size, polydispersity index, and encapsulation efficiency comparisons between LNP1 and LNP2.]
LNPs remain stable after 3-month storage at -80°C and -20°C.
High degrees of hepatocyte editing is detected via BaseScope in liver of LNP-treated NHP

Untreated NHP liver
LNP-treated NHP liver
(47% whole liver editing)
LNPs appear well tolerated in NHPs based on clinical pathology

- Minimal to mild transient increases in AST and/or ALT at 24hr (Day 2) post-dose resolving by Day 15
- No other significant changes in clinical pathology parameters were observed

ALT

AST

- • payload 1
- ▲ payload 2
- × payload 3
- Δ payload 4

1.5mg/kg
Improvements to LNP processes increase LNP potency up to 60% editing at clinically relevant dose

previously shared at 2021 ASGCT

1.5mg/kg

% A→G edit

Bars represent mean +/- standard deviation

n=2 or 3
Improvements to LNP processes increase LNP potency up to 60% editing at clinically relevant dose

Previously shared at 2021 ASGCT

n=2 or 3
Bars represent mean +/- standard deviation
We optimized the LNP platform for in vivo base editing in the liver

The optimized platform consists of
• Potent, immunosilent mRNA
• Chemically modified sgRNA
• Consistent, stable LNP

Optimized LNP produced up to 60% A→G editing in NHP liver at 1.0mg/kg

Optimization is a continuous journey
Developing LNPs for extrahepatic tissues

An ideal LNP discovery process would be (i) very high throughput, (ii) *in vivo* (mice → NHPs), and (iii) analyze delivery to any desired combination of on- / off-target cell types.
High-throughput *in vivo* screening of LNPs using DNA barcodes

mRNA Screening System

- **Material N**
- **Barcode N**
- **Cre mRNA**

NP library; each carries Cre mRNA+barcode

Cre-LoxP reporter mouse

FACS

- **tdTom− cells = not targeted**
- **tdTom+ cells = targeted**

Sequence barcodes in tdTom+ cells

NP1 < NP2 < NP3

Nanoparticles That Deliver RNA to Bone Marrow Identified by in Vivo Directed Evolution

Cory D. Sago, Melissa P. Lokugamage, Fatima Z. Islam, Brandon R. Krupczak, Manaka Sato, and James E. Dahlman

High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing

Developing LNPs for the delivery of mRNA to Hematopoietic Stem & Progenitor Cells (HSPCs)

- The development of LNPs for the targeting of HSPCs could meaningfully impact the treatment of hemoglobinopathies
- Using our DNA barcoding approaches, we identified a family of LNPs that delivers to HSPCs in mice.
- In Cre-reporter mice, hit ‘LNP A’ transfected in a dose-dependent manner with >40% HSPCs transfected at 1.0mg/kg
Thank you

mRNA
- Valentina McEneany
- Jason St. Laurent
- Krishna Sapkota
- Jeffrey Cataloni
- Shefal Parikh

gRNA
- Brian Cafferty
- James Tam
- Ho Yau

LNP
- Shailendra Sane
- Xiao Luo
- Dongyu Chen
- Raymond Yang
- Emma Wang
- Mihir Patel
- Cory Sago

In vivo
- Sarah Smith
- Krishna Ramanan
- Richard Dutko
- Dominique Leboeuf

Automation and NGS
- Jeremy Decker
- Colin Lazzara
- Bob Gantzer

Analytical Development
- Andrew Hashkes
- Jeff Marshall
- Carlo Zambonelli

Liver therapeutics
- Michael Packer
- Robert Dorkin

Cell Biology
- Deb Wysong

Toxicology
- Brian Johnson

Leadership
- John Evans
- Giuseppe Ciaramella
- Mano Singh
- Francine Gregoire
- Rodrigo Laureano
- Steve Prescott