

Translating Base Editing Technology into a Potential Treatment for Alpha-1 Antitrypsin Deficiency

Michael Packer

May 11, 2020

ASGCT Poster #1475

DISCLOSURE

▶ I am a Beam employee and shareholder

Base Editors Chemically Modify Target Bases, Permanently and Predictably

Base editor binds the target DNA and exposes a narrow editing window

Deaminase chemically modifies target base, permanently and predictably

A Precise, Versatile Editing Technology

Gene Correction	Directly repair point mutations to restore gene function	Abnormal Protein Expression
Gene Modification	Insert protective clinical variants to prevent or modify risk of disease	Baseline Protein
Gene Activation	Edit regulatory elements to reactivate gene expression	Regulatory element Gene
Gene Silencing	Edit stop codons or splice sites to silence expression	GlutamineCAG \Rightarrow TAGSTOP codonCAA \Rightarrow TAACAA \Rightarrow TAAArginineCGA \Rightarrow TGATryptophanTGG \Rightarrow TGATGG \Rightarrow TAGTGG \Rightarrow TAA
Multiplex Editing	Editing multiple sites simultaneously, with no detectable translocations	

A Precise, Versatile Editing Technology

Gene Correction	Today's presentation and poster #1475	
Gene Modification	Oral presentation #1438: Vivek Chowdhary will present an allosteric compensatory mutation approach to A1AT deficiency	
Gene Activation	Edit regulatory elements to reactivate gene expression	Regulatory element Gene
Gene Silencing	Edit stop codons or splice sites to silence expression	$ \begin{array}{c} \mbox{Glutamine} & \mbox{CAG} \rightarrow \mbox{TAG} & \mbox{STOP codon} \\ & \mbox{CAA} \rightarrow \mbox{TAA} \\ \mbox{Arginine} & \mbox{CGA} \rightarrow \mbox{TGA} \\ \mbox{Tryptophan} & \mbox{TGG} \rightarrow \mbox{TGA} \\ & \mbox{TGG} \rightarrow \mbox{TAG} \\ & \mbox{TGG} \rightarrow \mbox{TAA} \\ \end{array} \right) \qquad $
Multiplex Editing	Editing multiple sites simultaneously, with no detectable translocations	

Alpha-1 Antitrypsin (A1AT) Deficiency

Optimization of base editors for precise correction of PiZ Characterization of in vivo editing and liver A1AT aggregation Measurement of circulating A1AT levels following precise correction

Initial Screen in PiZZ Fibroblasts Reveals Low Rates of Precise Correction with Bystander Editing

What would be the biological consequence of these bystander edits?

The 5G+7G Allele Yields D341G A1AT Protein that Is Secreted and Functions Comparably to PiM

(1)

Hereafter 'beneficial alleles' refers to the sum of A7 (WT) and A5+A7 (D341G)

Editor Engineering Significantly Improves Rates of Correction in Primary PiZZ Fibroblasts

(1)

- From Variant 1 to Variant 9 we achieved over 20-fold improvement in correction of E342K.
- We also significantly decrease the ratio between the beneficial alleles and bystander edits.
- Next Step: In vivo Assessment

In Vivo Evaluation of E342K Precise Correction in NSG-PiZ Mice Using Lipid Nanoparticles (LNP)

- Beneficial Features of LNPs
 - Efficient targeting to liver
 - Clinically validated

(1

- Potential for repeat dosing
- Transient expression

Single IV administration to NSG-PiZ mice

- This model carries >10 PiZ transgene copies and retains functional mouse SERPINA1. It does not develop lung disease but does exhibit liver pathology.
- Serum collection for A1AT assays
- Tissue collection for histology and NGS of total liver extracts

Efficient LNP-mediated In Vivo Base Editing of **PCSK9** Target Site

treatment group

Durable to 3 months

(1)

LNP-mediated In Vivo Correction of the PiZ Mutation Increases Over Time

(1)

PiZ Correction is:

- Specific to the appropriate treatment group
- May confer a proliferative advantage to edited hepatocytes

LNP-mediated In Vivo Correction of the PiZ Mutation Increases Over Time

(1)

PiZ Correction is:

- Specific to the appropriate treatment group
- May confer a proliferative advantage to edited hepatocytes

Liver phenotype A1AT secretion and function

PAS-D Specifically Stains Insoluble PiZ Globules in Ream **NSG-PiZ Mouse Liver Sections**

200x

40x

2

100x

In Vivo Correction of the PiZ Mutation Reduces PAS-D Globule Burden in Mouse Liver

PCSK9

2

Correction

In Vivo Correction of the PiZ Mutation Reduces PAS-D Globule Burden in Mouse Liver

PCSK9

2

Correction

Color Threshold Analysis

Genetic correction of E342K decreases PASD staining density and intensity

In Vivo Correction of the PiZ Mutation Increases Total Human A1AT in Serum

3

- Serum A1AT declines in the control group
- Upon genetic correction, a durable increase in serum A1AT is observed (4.9-fold at 3 months)
- This increase in serum A1AT, if translated to humans, could confer some degree of pulmonary protection

In Vivo Correction of the PiZ Mutation Increases Functional A1AT in Serum

3

Genetic correction increases serum capacity to inhibit neutrophil elastase

- Normalized to a purified human A1AT standard

Mass Spectrometry Confirms the Emergence of WT (PiM) and D341G A1AT

- Isoform abundance correlates with allele frequencies (PiM>D341G)
- Genetic correction decreases E342K (PiZ) abundance

Progress Towards an A1AT Deficiency Base Editing Therapeutic

Next Steps & Conclusions

Conclusions:

 Taken together, our results indicate that the precise correction of the PiZ mutation with an adenine base editor represents a feasible approach for the treatment of A1AD lung and liver disease.

Next steps:

- Further optimization of our proprietary LNP formulation is progressing
- Additional improvements to editor and gRNA are ongoing
- Off-target characterization has been initiated

Liver Therapeutics

- Francine Gregoire
- Genesis Lung
- Lo-I Cheng
- Yvonne Aratyn-Schaus
- Tom Fernandez
- Elena Smekalova

Nonviral Delivery

- Delai Chen
- Aalok Shah
- Robert Dorkin

In vivo

- Sarah Smith
- Krishna Ramanan
- Richard Dutko

A-Team/NGS Team

- Bob Gantzer
- Matt Humes
- Jeremy Decker

mRNA Team

- Aaron Larsen
- Mark Naniong
- Valentina McEneany

gRNA Team

Brian Cafferty

Analytical Development

- Carlo Zambonelli
- Bo Yan
- Jeff Marshall

DNA Editing Platform

- Nicole Gaudelli
- Dieter Lam

Off-Target Biology

- Brian Busser
- Seda Gyonjyan

BD/Leadership

- Giuseppe Ciaramella
- John Evans
- Courtney Wallace
- Sylvia Eash
- Charlie Liu
- Steve Cavnar

UMass Medical School

- Chris Mueller
- Marina Zieger
- Vivek Chowdhary

Thank You

Questions!

