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Normal Erythropoiesis, Sickle Cell Disease and 

Hereditary Persistence of Fetal Hemoglobin (HPFH)
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Base Editing at HBG1 and HBG2 (HBG1/2) Gene Promoters
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Base Editing at HBG1 and HBG2 (HBG1/2) Gene Promoters
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Adenine Base Editing Technology

Gaudelli NM et al., Nature (2017);  Gaudelli NM et al., Nature Biotechnology (2020).
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• Adenine Base Editor (ABE) comprises a 

deaminase enzyme fused to 

catalytically impaired CRISPR protein.

• Guide RNA (gRNA) directs the ABE to a 

target genomic DNA sequence and 

exposes the editing window.

• Deaminase chemically converts target 

adenine (A) to inosine (I) via 

deamination.

• Guanine (G) subsequently replaces 

inosine during DNA repair or replication. 
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Aγ δ βSGγ

α

αγ

γ

Re-expression of γ-globin 

decreases βS-globin and inhibits 

hemoglobin polymer formation

Red blood cells with increased 

γ-globin have decreased 

sickling phenotype

Guide RNA-targeting ABE 

produces A-to-G edits in 

HBG1/2 promotor regions and 

derepresses γ-globin expression 
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Today’s 

Agenda:
In vitro optimization 
Optimize A-to-G base editing in 

mobilized human CD34+ 

hematopoietic stem/progenitor 

cells (HSPCs) by titrating ABE 

mRNA and guide RNA. 

1 γ-globin upregulation
Maximize γ-globin protein 

levels produced in erythroid 

cells.

2 In vivo performance
Long-term engraftment, 

retention of editing, 

γ-globin protein upregulation, 

and multi-lineage 

hematopoietic reconstitution.
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Maximizing A-to-G Base Editing at HBG1/2 Gene Promoters 

HBG1/2 Promoter

Base Editing (%)

(Day 14 EDIFF)

HBG1/2 Promoter 

Base Editing (%)

(48 h Post-EP)

Gamma Globin 

Protein Levels (%)

(Day 18 EDIFF)

• Base editing at HBG1/2 promoters in CD34+ HSPCs is dependent on ABE mRNA and guide RNA concentration. 

• Base editing levels increase following in vitro-mediated erythroid differentiation (EDIFF).

• Increased gamma globin protein levels with increasing A-to-G base editing at HBG1/2 promoters in erythroid cells.
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HBG1/2 Gene Promoter Base Editing is Tightly Correlated 

with Gamma Globin Protein Induction In Vitro

• Linear regression analysis demonstrates that HBG1/2 gene promoter base editing and gamma globin protein 

levels in human erythroid cells in vitro are tightly correlated.

• Analysis is consistent with achieving >60% gamma globin protein levels at high base editing levels.
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Base Editing at HBG1/2 Gene Promoters in SCD Patient Cells 

Increases Gamma Globin Levels in Erythroid Cells In Vitro

HBG1/2 Promoter

Base Editing (%)

Gamma Globin 

Protein Levels (%) 

Sickle β-Globin 

Protein Levels (%) 

• >80% base editing at HBG1/2 gene promoters achieved in in vitro-derived erythroid cells from a homozygous 

sickle cell disease (SCD) donor.

• >60% gamma globin protein levels (relative to total β-like globins) with a concomitant decrease in sickle β-globin.
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Human CD34+ HSPCs Retain Long-term Engraftment 

and HBG1/2 Gene Promoter Base Editing In Vivo

Mean±SEM

n=3 (8 weeks)

n=6-7 (16 weeks)

Human Chimerism (%) HBG1/2 Promoter Base Editing (%)

Post-Transplant (weeks) Post-Transplant (weeks)

• >90% human chimerism and >90% base editing at HBG1/2 gene promoters achieved in bone marrow 

samples at 16 weeks post-transplantation.
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HBG1/2 Gene Promoter Edited CD34+ HSPCs Display         

Long-Term Multi-Lineage Hematopoietic Reconstitution In Vivo

Human HSPCs Human Erythroid Cells

Human Myeloid Cells Human Lymphoid Cells

Post-Transplant (weeks) Post-Transplant (weeks)

Post-Transplant (weeks) Post-Transplant (weeks)
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HBG1/2 Gene Promoter Base Editing is Maintained Long-Term      

Post-Engraftment with Elevated Gamma Globin Levels In Vivo 

Gamma Globin Protein Levels (%)

(Sorted Human Erythroid Cells)

Human Cell Populations

HBG1/2 Promoter Base Editing (%)

(Sorted Bone Marrow Cells)

• >90% base editing achieved in sorted human HSPCs, myeloid, lymphoid and erythroid cells at 16 weeks  

post-transplantation.

• >65% gamma globin protein levels expressed in sorted base edited erythroid cells compared to unedited cells. 

• Similar human chimerism, HBG1/2 promoter base editing and gamma globin protein upregulation has been 

achieved in a second mobilized CD34+ HSPC donor at 18 weeks post-transplantation.
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Key Takeaways

✓

• Increased base editing of the HBG1/2 gene promoters was achieved in mobilized CD34+ HSPCs in a 

dose-dependent manner using ABE mRNA and guide RNA.

✓

• Base editing highly correlated with γ-globin production (R2=0.99) and suggests that >60% γ-globin protein 

induction could be achieved in vitro.

• SCD Patient Cells: >80% base editing was observed in erythroid cells in vitro, resulting in upregulation 

(>60%) of γ-globin protein levels with a concomitant decrease in sickle β-globin.

• Human CD34+ HSPCs retained long-term engraftment and >90% human chimerism, maintained >90% base 

editing at HBG1/2 gene promoters, and displayed multi-lineage hematopoietic reconstitution.

• Base edited erythroid cell progeny produced high (>65%) γ-globin levels compared to unedited cells (<1.5%).

In vitro optimization 

γ-globin upregulation

In vivo performance

✓
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