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Introduction Recombinant Makassar globin exhibits normal hemoglobin biophysical/ HbG does not polymerize in vitro
biochemical properties and oxygen binding

Conversion of the pathogenic sickle allele to a naturally occurring, non-pathogenic hemoglobin variant, Hb
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efficiencies, high bi-allelic editing can be achieved with reduction of HbS globin levels to <15% and a reduction
of in vitro sickling of edited cells exposed to hypoxic conditions. Through a comprehensive assessment of
purified recombinant Makassar protein, we were able to demonstrate normal biochemical and biophysical
properties, consistent with Makassar globin being compatible with normal hemoglobin function. We further

Highly efficient base editing in HSPCs to install Makassar variant
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allelic Makassar edited cells exhibit reduced sickling in response to hypoxia (2% O,) in vitro.
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