

Non-genotoxic antibody-based conditioning paired with multi-plex base edited HSCs for the potential treatment of sickle cell disease

Nicole Gaudelli, PhD FASEB Genome Engineering Conference June 27th, 2022

Sickle cell disease (SCD) is a monogenetic disease caused by a single-letter mutation in the *HBB* gene

β-globin gene

T-to-A mutation causes sickling

Adult β-globin gene

Glutamine at 6th amino acid (HbA)

Normal red blood cells

Sickle β-globin gene

Valine at 6th amino acid (HbS)

Sickling red blood cells

There are approximately 100,000 sickle cell disease patients in the US

Long term strategy to potentially cure SCD and build a transformative platform within hematology

Bone marrow niche harbors HSCs, the cells that reconstitute the hematopoietic system

HSC = Hematopoietic stem cells

= Stem Cell Factor (SCF) the ligand for CD117

- Hematopoietic stem cells (HSCs) are harbored in the bone marrow microenvironment
- Stromal cells secrete stem cell factor (SCF), that signals through CD117 on HSCs and support survival and renewal of HSCs
- Differentiation of HSCs both in bone marrow and the periphery are responsible for reconstitution of the hematopoietic system
- Genome-edited long-term HSCs are potentially curative for sickle cell disease

Autologous transplantation of engineered HSCs currently requires conditioning with toxic alkylating antineoplastic agents such as busulfan

Next generation of conditioning agent are designed to enable graft cells to "ESCAPE" the conditioning agent

Adenine base editors (ABEs) chemically modify target bases, permanently and predictably

ABEs conduct chemistry on the genome

ABEs are highly efficient in primary cells such as HSCs

ABE: Gaudelli, N. M. et al. Nature **551**, 464-471 (2017) CBE: Komor, A. et al. Nature **533**, 420–424 (2016)

CD117 is an optimal target for conditioning with expression on short- and long-term HSCs

- CD117 is expressed on HSCs and is critical for their self-renewal, survival, & differentiation
- High expression in the longterm and short-term HSCs make CD117 an attractive target for immunologic conditioning

CD117 requires SCF binding and autophosphorylation to enable downstream signaling and HSC cell proliferation

No SCF bound to CD117
No phosphorylation
No downstream signaling

SCF binds CD117

SCF bound to CD117
Intracellular phosphorylation
Downstream signaling

Many CD117 epitopes evaluated and targeted with ABE

Goal: identify a mutation in CD117 that disallows mAb binding

Gene Editing Requirements:

- CD117 gene edit uses an ABE editor previously validated for sickle cell disease correction
 - Enables multi-plex capability
- CD117 DNA targets contain an NGG PAM
 - Adenine nucleobase appropriately placed in the window
- ABE edit causes an amino acid substitution in a residue of CD117 that is solvent exposed for potential orthogonality in mAb binding relative to wild-type.

Base edited CD117 epitope enables eHSCs to selectively ESCAPE mAb binding

Unedited CD34 cell
No CD117 mAb
Normal signaling

Cell Survives

Unedited CD34 cell
CD117 mAb displaces SCF
CD117 signaling blocked

Cell Dies

Edited CD34 cell Escapes CD117 mAb Normal signaling

Cell survives

ESCAPE: Engineered Stem Cell Antibody Paired Evasion

ABE compatible CD117 antigen engineering and antibody screening summary

Engineered antigen screening funnel:

Antibody screening funnel:

mAb-7 binds minimally to CD117 variant (created through base editing) and blocks SCF

mAb-7 has negligible binding to CD117 variant

	M07e cells expressing wt CD117	M07e cells expressing CD117 ESCAPE variant	SCF blocking	KD(M) Human CD117	KD(M) Cyno CD117
mAb7	Yes	L/N	Yes	<1.0E-12	<1.0E-12

- mAb-7 binds CD117 with high affinity (pM)
- mAb-7 binds minimally to CD117 variant as purified protein with rapid dissociation
- mAb-7 blocks SCF binding to CD117

CD34+ cells edited with ABE8 + CD117-targeting sgRNA escape recognition by antibodies that bind to wild type CD117

mAb-7 concentration (ng/mL)

- unedited CD34+ cells
- CD34+ cells expressing CD117 ESCAPE variant

Exposure of mAb-7 to wild-type CD34+ cells mimics complete SCF withdrawal

- unedited CD34+ cells
- CD34+ cells with CD117 base edit
- ★ 1:1 mixture of unedited and CD117 base edited CD34+ cells

BEAM-101: Recreating hereditary persistence of fetal hemoglobin (HPFH) with base editing

Sickle cell disease patient

Reactivating fetal hemoglobin genes

of both fetal hemoglobin genes, without inducing double-strand DNA breaks bind but are otherwise unaffected

- Naturally-occurring base changes cause Hereditary Persistence of Fetal Hemoglobin (HPFH), which protects patients from SCD/B-Thal
- Base editors can reproduce these changes, leading to high, consistent levels of fetal hemoglobin
- Higher fetal hemoglobin likely to correlate with further reductions in disease symptoms

ESCAPE-1: Base editing enables efficient multiplex editing of both ESCAPE CD117 edit and HbF induction

- gRNA for therapeutic edit such as for BEAM-101 or BEAM-102 (Makassar)
- gRNA for surface antigen epitope change that does not impact HSC biology but protects from mAb
- Single <u>base editor</u> capable of efficient multiplex edit of both therapeutic edit and antigen modification

Highly efficient multiplex editing of CD117 and HBG1/2 can be achieved in CD34+ HSPCs

multiplex base editing efficiency is equivalent to single-plex

- Multiplexing of HBG1/2a and CD117 sgRNAs with ABE leads to efficient base editing of both targets (>85%)
- Single clonal analysis reveals that all cells have HBG1/2 editing in the multiplex editing condition.
- CD117 multiplex editing outcomes are: >97% bi-allelic, 1.5% mono-allelic, and 1.5% unedited

multiplex base editing of CD117 target with HBG1/2 site does not hinder y-globin induction

- ∼60% gamma globin induction detected in IVED cells differentiated from multiplex edited CD34+ cells
- multi-plex editing (CD117 site + HBG1/2) leads to similar levels of gamma G in IVED cells as base editing of HBG1/2 alone.

SCF blocking by mAb-7 significantly inhibits erythroid colony formation

BFU-E colonies (n=24) were sequenced in each group

CD117 requires SCF binding and autophosphorylation to enable downstream signaling and HSC cell proliferation

No SCF bound to CD117
No phosphorylation
No downstream signaling

SCF binds CD117

SCF bound to CD117
Intracellular phosphorylation
Downstream signaling

Base edited CD117 cells can bind to ligand SCF and induce phosphorylation in vitro

- Cells edited with CD117 sgRNA retain the ability to bind SCF
- Upon SCF binding, edited CD117 undergoes phosphorylation similar to WT protein
- mAb-7 blocks SCF binding as well as CD117 phosphorylation in unedited cells
- mAb-7 fails to block SCF binding to edited protein
- Edited protein undergoes phosphorylation even in the presence of mAb-7

Fc Engineered versions of anti CD117 mAb-7 do not produce mast cell degranulation in vitro

ESCAPE-2: Makassar Editing for SCD + CD117 edit paired with mAb-7 for conditioning

BEAM-102: Direct correction of the sickle causing mutation

- ▶ Base editing recreates naturally-occurring human variant Hb-G Makassar which has alanine (E6A) instead of sickle-causing valine (E6V)¹
- Hb-G Makassar is a normal β-globin variant and does not cause sickle disease, e.g., blood smear shows negative for sickle cells²

Identification of guide that can be multiplexed with Makassar installation that evades mAb-7 binding

- A second CD117 variant identified that escapes mAb-7 binding and can be accessed through ABE editing

Summary

- Genotoxic conditioning continues to be a major barrier to the adoption of HSC transplant
- New conditioning agents show promise but cannot discriminate between disease and transplanted cells, and therefore are designed with short half-life or given at low doses well before transplant
- To solve this, we developed a concept we call Engineered Stem Cell Antibody Paired Evasion (ESCAPE), where a base-edited antigen: antibody pair enables edited cells to be resistant to mAb binding. Contrastingly, this conditioning mAb, binds to and interferes with CD117:
 - mAb-7 binds wild-type CD117 with high affinity but minimally to base edited CD117 variant protein
 - Edited CD117 behaves normally in vitro vs wild-type in proliferation, differentiation, viability, and phosphorylation assays
 - Fc engineered mAb-7 does not induce mast-cell degranulation in vitro
- (ESCAPE-1) Multiplexing CD117 sgRNA with therapeutic sgRNAs (e.g. *HBG1/2*) with a single ABE8 editor achieved >85% CD117 base editing in CD34+ cells also containing therapeutic edit
 - Multiplex base edited CD34+ cells evade mAb-mediated effects and SCF-ligand blocking, allowing for escape in vitro
- (ESCAPE-2) mAb-7:CD117 edit pair, that can be installed by an ABE, is also compatible with efficient base editing to convert the causative SCD mutation into a variant encoding the naturally-occurring, non-polymerizing hemoglobin Makassar

Hematology Team:

Haihua Chu
Nandini Mondal
Alex Harmon
Cristina Baricordi
Elizabeth Budak
Ka Tat Siu
Adrian Rybak
Lili Yu
Sarah Thomas
Adam Hartigan

Biotherapeutics:

Kathy Zhang
Jeff Wong
Shawn Jennings
Brian Best
Charlotte McDonagh

In Vivo Team:

Archita Menon
Joe Rocha
Moriah White
Adam Wolin
Adam Camblin
Sarah Smith

Program

Management:

Bryan Peguero Shane Larson

Strategy:

Stephen Cavnar

Clinical:

Alex C. Minella

GEPT team:

Yi Yu

Thomas Leete Dieter Lam Matt Lee

Analytical Sciences:

Jenny Olins
Salette Martinez
Boriana Tzvetkova
Jeff Marshall
Valerie Winton

Bo Yan

Carlo Zambonelli Rebecca Jenkins

CompBio:

Tanggis Bohnuud David Born Lauren Young Maya Sen Luis Barrera **Automation:**

Colin Lazzara Mudra Patel Bob Gantzer Jerry Decker

Legal:

Elbert Chiang Alan Hebert Jonathan Mahlowitz Nicole Mastrangelo

Flow Cytometry

Lisa Hardy High Kromer Tae Hyung Lee

ELT:

John Evans Pino Ciaramella Terry-Ann Burrell Chris Bellon

AND many more!!

