

In Vivo Genetic Eye Disease Correction Using Split AAV-Mediated Adenine Base Editing

Jack Sullivan

DISCLOSURE

I am an employee and shareholder of Beam Therapeutics

Base Editing For Stargardt Disease Correction

- Stargardt Disease (STGD) is an inherited blinding disorder that is characterized by progressive central vision loss
- Mutations in the ABCA4 (G1961E) gene cause the death of photoreceptors and retinal pigment epithelium (RPE)
- ► STGD affects ~100k people in developed countries¹
 - The most prevalent mutation,
 G1961E, comprises 15% of all
 STGD patients²
- This G>A disease causing point mutation can be corrected via adenine base editing

STGD G1961E Patient

- 1. Stargardt Disease: Diagnosis, Causes & Treatment (clevelandclinic.org)
- 2. Fujinami, K. et al. Br J Ophthalmol 103, 390-397 (2019)

Base Editors Generate Permanent and Predictable Single Nucleotide Substitutions

Base editor binds the target DNA and exposes a narrow editing window

Deaminase chemically modifies target base, A>G edit made permanent by DNA repair/replication

A-to-G base editor ("ABE")

Gene Correction – Direct repair of point mutations to restore gene function

Dual Adenines In Codon 1961E Allows for Editing Assessment In Mutant and WT Tissue

A8G wobble base editing can be used as a surrogate for target base editing in WT models

Split Inteins Recombine Base Editors Post Translation And Maintain Editing Functionality

N-terminal AAV

C-terminal AAV

Split Inteins Recombine Base Editors Post Translation And Maintain Editing Functionality

N-terminal AAV

C-terminal AAV

ABE with dsDNA and sgRNA

Spliced Intein

STGD 293T cells

Split base editors with inteins edit as efficiently as full-length editors by plasmid transfection

Multiple Model Systems Were Used to Optimize the Base Editor

	In vitro	In vivo (SR Injection)
WT (A8G)		
Mutant (A7G)		

In vitro: 293T, human retinal organoids, iPSC derived RPE, human retinal explants, human RPE/choroid explants In vivo: C57BL/6J mice (WT and *Abca4*^{huG1961E}), Non-human primates (cynomolgus macaques)

Editor Optimization in iPSC Derived RPE and Human Retinal Organoids

Photoreceptors and RPE Cells Can Be Base Edited Following Subretinal Injection of Split-AAV

- Subretinal injection is localized in a bleb between the RPE and photoreceptor outer segment, adjacent to the fovea
 - Fovea: cone rich region of the eye with highest visual acuity
- Cone photoreceptors and RPE are the primary cell types targeted for rescue in Stargardt Disease

Optimized Editor And Capsid Delivery To Target Cells In Human Retinal Tissue

AAV5-CMV-eGFP Hoescht, arrestin3, eGFP

- ▶ Dual AAV5 transduction of human retina achieves >30% editing in cones
- ▶ RPE/choroid explants can reach up to 80% editing in the cDNA
 - ABCA4 is expressed in the RPE, but not the choroid
- Immunofluorescent imaging shows GFP delivery to cone cells by AAV5

Off-target analysis was done from edited human retina and RPE explants. There was no detectable off target editing seen across 418 sites tested.

Stargardt G1961E Humanized Mice Demonstrate In Vivo Allele Correction Using ABE

Subretinal Delivery to NHPs Achieves Therapeutically Relevant Levels of Base Editing in Cone and RPE Cells

Clinically relevant levels of editing in cell types of interest of a mammal with a fovea

Conclusion: POC In Vivo Correction Of ABCA4 G1961E Bec

- ▶ Editing optimization done in human retinal explants, iPSC derived RPE, and human retinal organoids can translate to in vivo data
- ▶ AAV5 delivers base editors to **photoreceptors** and **RPE** via subretinal delivery
 - Base correction strategy allows for endogenous control of expression
 - Corrected protein in desired location within cells types of interest
- Stargardt ABCA4 G1961E can be corrected in relevant cells of mutation-carrying mice
- A surrogate base can be efficiently base edited in NHPs and demonstrates feasibility in a mammalian model containing a fovea
- It is estimated that 10-20% rescue of cones will be disease modifying³; we have achieved on average 40% editing of cones in NHP at therapeutically relevant doses

IOB:

Alissa Muller Bence György

Botond Roska

Hendrik PN Scholl

Pascal Hasler

Wibke Schwarzer

Mantian Wang

Mert Duman

Jane Matsell

Beryll Klingler

Simon Hostettler

Lucas Janeschitz-Kriegl

Thierry Azoulay

Pierre-Henri Moreau

Arnold Szabo

Daniel Magda

Beam Ophthalmology:

David Bryson

Cindy Park-Windhol

Arogya Khadka

AAV Production:

Tamas Virag

Chen Wang

Alena Hornakova

Alex Casey

Hui Wu

Geoff Burns

Computational:

Luis Barrera

Lauren Young

David Born

Lan Shuan Shuang

Phil Grayson

Automation:

Jerry Decker

Matt Humes

Legal:

Elbert Chiang

Nicole Mastrangelo

Business:

Courtney Wallace

Mike Attar

Charlie Liu

Sylvia Eash

Maria-Louisa Izamis

Leadership:

John Evans

Pino Ciaramella

Francine Gregoire

Thank You!

BioRxiv publication Muller A et al. bioRxiv 2023.04.17.535579